وبلاگ شخصی فاطمه حسینی

این وبلاگ شخصی من هستش که دانش آموز پایه نهم مدرسه شاهد غدیر 1 شهر قدس هستم.

وبلاگ شخصی فاطمه حسینی

این وبلاگ شخصی من هستش که دانش آموز پایه نهم مدرسه شاهد غدیر 1 شهر قدس هستم.

چرخه خورشید

اندازه‌گیری دگرگونی‌های چرخهٔ خورشیدی در یک بازهٔ سی ساله.


لکه های خورشید

هنگام مشاهدهٔ خورشید اگر فیلترهای مناسب را بکار بریم بی‌درنگ می‌توانیم لکه‌های خورشید را ببینیم. این لکه‌ها به دلیل داشتن دمایی پایین‌تر از پیرامونشان، به صورت سطحی تاریک تر دیده می‌شوند. شدت فعالیت مغناطیسی در لکه‌های خورشیدی بسیار بالا است تا آنجا که فرایندهای همرفتی هم توسط میدان مغناطیسی بسیار قوی آن ناحیه مهار می‌شود برای همین انرژی گرمایی کمتری از درون داغ خورشید به سطح این ناحیه‌ها می‌رسد. میدان مغناطیسی بسیار قوی باعث داغی بسیار بالای تاج خورشیدی می‌شود و ناحیه‌های فعالی را پدیدمی‌آورد. این ناحیه‌های فعال منبع شراره‌های شدید خورشیدی و خروج جرم از تاج خورشیدی است. بزرگترین لکه‌های خورشیدید می‌توانند تا ده‌ها هزار کیلومتر پهنا داشته باشند.

شمار لکه‌های خورشیدی قابل دید ثابت نیست و هر ۱۱ سال همراه با چرخهٔ خورشیدی تغییر می‌کند. معمولاً اندکی از لکه‌های خورشیدی قابل دیدند و حتی گاهی هیچ‌کدام دیده نمی‌شوند. لکه‌هایی که دیده می‌شوند در عرض‌های بالای خورشید قرار دارند. هرچه که چرخهٔ خورشید بیشتر پیش رود شمار لکه‌ها بیشتر و به مدار استوایی خورشید نزدیکتر می‌شوند. این پدیده را قانون اشپورر توضیح می‌دهد. لکه‌های خورشیدی بیشتر به صورت جفت با قطب‌های مخالف مغناطیسی‌اند. قطب‌های مغناطیسی لکه‌های مهم خورشید به صورت یک در میان در هر چرخهٔ خورشیدی تغییر می‌کند به این ترتیب یک لکه می‌تواند در یک دوره قطب مغناطیسی شمال و در دورهٔ آینده قطب مغناطیسی جنوب باشد.

درخشش خورشید ارتباط مستقیم با فعالیت‌های مغناطیسی آن دارد به همین دلیل چرخهٔ خورشیدی تأثیر مهمی بر هوای فضای پیرامون کرهٔ زمین و آب و هوای خود زمین می‌گذارد.

مغناطیس

خورشید ستاره‌ای فعال از دیدگاه مغناطیسی است. یک میدان مغناطیسی توانا دارد که سال به سال اندکی سویش تغییر می‌کند تا اینکه هر یازده سال وارون می‌شود.میدان مغناطیسی خورشید دارای اثرهای بسیاری است که به مجموعهٔ آن‌ها فعالیت خورشیدی گفته می‌شود. از جملهٔ آن‌ها، لکه‌های خورشیدی بر سطح آن، شرارهٔ خورشیدی و دگرگونی‌ها در بادهای خورشیدی است که باعث جابجایی ماده درون سامانهٔ خورشید است. فعالیت‌های خورشید بر زمین هم اثر می‌گذارد. برای نمونه می‌توان به شفق قطبی که در ناحیه‌های نزدیک به قطب دیده می‌شود یا دیدن شکست یا خرابی در موج‌های رادیویی و توان الکتریکی اشاره کرد. گمان آن می‌رود که میدان مغناطیسی خورشید نقش مهمی در ساخت و کامل شدن سامانهٔ خورشیدی داشته باشد. همچنین این فعالیت‌های خورشیدی، ساختار بخش بیرونی هواکرهٔ زمین را هم تغییر می‌دهد

به دلیل دمای بسیار بالای خورشید، تمام مادهٔ موجود در آن در حالت گازی و پلاسما است. این ویژگی به خورشید این توان را می‌دهد تا در مدار استوایی اش تندتر (نزدیک ۲۵ روز) از عرض‌های جغرافیایی بالاتر (نزدیک به ۳۵ روز در ناحیهٔ قطبی) بگرد خود بچرخد.گردش اختلافی خورشید در عرض‌های جغرافیایی گوناگون آن باعث می‌شود تا با گذر زمان خط‌های میدان مغناطیسی خورشید در هم پیچیده شود، حلقه‌های میدان مغناطیسی در سطح خورشید فوران کند و در نتیجه لکه و زبانهٔ خورشیدی پدید آید. در اثر همین پیچش است که پویایی خورشیدی و چرخهٔ یازده سالهٔ وارونه شدن میدان مغناطیسی خورشید پدیدار می‌شود.

میدان مغناطیسی خورشید بسیار فراتر از خود خورشید را هم دربر می‌گیرد. بادهای خورشیدی مغناطیسی پلاسمایی، میدان مغناطیسی خورشید را به بیرون از خورشید می‌برد، پدیده‌ای که امروزه به آن میدان مغناطیسی میان‌سیاره‌ای گفته می‌شودپلاسما تنها می‌تواند در راستای خط‌های میدان مغناطیسی جابجا شود برای همین میدان مغناطیسی میان‌سیاره‌ای به صورت شعاعی گسترش یافته‌است. چون میدان مغناطیسی بالا و پایین مدار استوایی خورشید قطبش‌های متفاوت از یا به سوی خورشید دارند، یک لایهٔ نازک جریان در صفحهٔ استوایی خورشید پدید می‌آید که به آن صفحهٔ جریان نورکره گفته می‌شود.[۶۸] در فاصله‌های دور، چرخش خورشید باعث پیچیده شدن میدان مغناطیسی و صفحهٔ جریان به شکل حلزونی ارشمیدس می‌شود؛ مانند سازهٔ مارپیچ پارکر.[۶۸] میدان مغناطیسی میان‌سیاره‌ای بسیار قوی تر از اجزای میدان مغناطیسی دوقطبی خورشید است. میدان مغناطیسی دوقطبی ۵۰ تا ۴۰۰ میکروتسلایی خورشید (در شیدسپهر) با توان سهٔ فاصله کاهش می‌یابد و در نزدیکی‌های زمین به ۰٫۱ نانوتسلا می‌رسد. اما داده‌های بدست آمده توسط فضاپیماها نشان می‌دهد میدان مغناطیسی میان‌سیاره‌ای در نزدیکی زمین ۱۰۰ برابر قوی تر است.

جو

از تمام خورشید فقط جو آن قابل مشاهده‌است ناحیه‌ای که از لحاظ فعالیت نیز غنی است پایه جو خورشیدی شید سپهر است لکه‌های خورشیدی بر روی شید سپهر ظاهر می‌شوند لایه خارجی بعدی رنگین سپهر است تاج آخرین لایه جوی خورشید می‌باشد.

شید سپهر یک لایه نازک گاز که بیشترین عمقی که می‌توانیم آن را مشاهده کنیم و تابش قابل رویت از آن منتشر می‌شود وبر این سطح دانه‌های گذرا با عمر متوسط ۵ تا ده‌ها دقیقه را مشاهده می‌کنیم شکل‌گیری‌های روشن نامنظم که به وسیلهٔ رگه‌های تاریک احاطه شده‌اند این دانه دار شدن خورشیدی لایه بالایی ناحیه جا به جایی خورشید است لایه گازی به ضخامت حدود ۰/۲r زمینی که درست زیر پایه شید سپهر قرار می‌گیرد در این منطقه انرژی گرمایی توسط جا به جایی منتقل می‌شود توده‌های گرم

گاز (سلول‌های جا به جایی) بالا می‌روند و به صورت دانه‌های روشن ظاهر می‌شوند و انرژیشان را در شید سپهر تخلیه می‌کنند گازهای سرد تر پایین می‌آیند. طیف پیوستار سرار قرص خورشیدی یک دمای مؤثر _استفان بولتزمن_ 5800k را برای شید سپهر تعریف می‌کند از میان شید سپهر به سمت بیرون دما به شدت پایین می‌آید و سپس مجدداً در حوالی ۵۰۰km داخل رنگین سپهر شروع به بالا رفتن می‌کند تا این که به دماهای بسیاربالا درتاج می‌رسد. شید سپهر یک طیف پیوسته جسم سیاه گسیل می‌دارد لذا بایستی در طول موج‌های مرئی کدر باشد اما چگالی‌ها در اینجا بسیار کمتر از مقداری است که گاز برای کدر بودن و تولید تابش پیوسته جسم سیاه لازم دارد.

خورشید


از مرکز خورشید تا فاصله‌ای نزدیک به ۲۰ تا ۲۵ درصد شعاع خورشید به عنوان هستهٔ خورشید در نظر گرفته شده‌است.[۴۱] و چگالی آن ۱۵۰g/cm۳ نزدیک به ۱۵۰ برابر چگالی آب، برآورد شده‌است.[۴۲][۴۳] و دمای آن هم نزدیک به ۱۵٫۷ میلیون کلوین بدست آمده‌است. در مقابل دمای سطح خورشید نزدیک به ۵٬۸۰۰ کلوین است. تازه‌ترین پژوهش‌ها نشان داده‌است که گردش هستهٔ خورشید به دور خودش از دیگر جاهای شعاعی آن تندتر است.[۴۱] در بیشتر عمر خورشید، همجوشی هسته‌ای از راه زنجیره گام‌های p-p (پروتون-پروتون) و در نتیجه دگرگونی هیدروژن به هلیوم فراهم‌کنندهٔ انرژی خورشید بوده‌است.[۴۴] تنها ۰٫۸٪ از انرژی پدید آمده در خورشید وارد چرخهٔ سی‌ان‌او می‌شود.[۴۵]

هم‌سنجی سیاره‌های منظومه خورشیدی با تعدادی از ستاره‌های مشهور:
الف:
زمین (۴) > ناهید (۳) > مریخ (۲) > تیر (۱)
ب:
مشتری (۸) > زحل (۷) > اورانوس(۶) > نپتون (۵) > زمین (بدون شماره)
پ:
شباهنگ (۱۱) > خورشید (۱۰) > ولف ۳۵۹ (۹) > مشتری (بدون شماره)
ت:
دبران (۱۴) > نگهبان شمال (۱۳) > رأس پیکر پسین (۱۲) > شباهنگ (بدون شماره)
ث:
ابط‌الجوزا (۱۷) >قلب عقرب (۱۶) > پای شکارچی (۱۵) > دبران (بدون شماره)
ج:
وی‌وای سگ بزرگ (۲۰) >وی‌وی قیفاووس (۱۹) > مو قیفاووس (۱۸) > ابط‌الجوزا (بدون شماره)

هسته تنها ناحیه در خورشید است که بخش بزرگی از انرژی گرمایی آن را از راه همجوشی هسته‌ای فراهم می‌کند. به این ترتیب در ناحیه‌ای درونی از مرکز تا ۲۴٪ شعاع، کارمایهٔ ۹۹٪ خورشید فراهم می‌شود و تا ۳۰٪ از شعاع، فرایند همجوشی هسته‌ای به تمامی می‌ایستد و دیگر ادامه نمی‌یابد. دیگر جاهای ستاره از راه جابجایی انرژی از مرکز به لایه‌های بیرونی گرم می‌شود. کارمایهٔ پدید آمده در هسته پس از گذر از لایه‌های پی در پی وارد شیدسپهر می‌شود و از آنجا به صورت نور یا انرژی جنبشی ذرات به فضا می‌گریزد.[۴۶][۴۷]

در هستهٔ خورشید در هر ثانیه، زنجیرهٔ پروتون-پروتون ۹٫۲×۱۰۳۷ بار روی می‌دهد. از آنجایی که در این فرایند چهار پروتون آزاد (هستهٔ هیدروژن) هم‌زمان درگیر است پس در هر ثانیه ۳٫۷×۱۰۳۸ پروتون به ذرهٔ آلفا (هستهٔ هلیوم) دگرگون می‌شود به زبان دیگر ۶٫۲×۱۰۱۱ کیلو در ثانیه. در مجموع می‌توان گفت در سراسر خورشید نزدیک به ۸٫۹×۱۰۵۶ پروتون آزاد دگرگون می‌شود.[۴۷] می‌دانیم که در هر همجوشی و دگرگونی هیدروژن به هلیوم نزدیک به ۰٫۷٪ از حرم به انرژی دگرگون می‌شود.[۴۸] پس خورشید در هر ثانیه ۴٫۲۶ میلیون تن جرم را در دگرگونی ماده-انرژی درگیر می‌کند. یا می‌توان گفت ۳۸۴٫۶ یوتا وات[۱] (۳٫۸۴۶×۱۰۲۶) یا ۹٫۱۹۲×۱۰۱۰ مگاتن TNT در هر ثانیه. این مقدار جرم از میان نمی‌رود بلکه بر پایهٔ هم‌ارزی جرم و انرژی به صورت انرژی تابشی در می‌آید.

مقطع عرضی یک ستاره مانند خورشید (ناسا)

توان تولید انرژی در هسته با کمک همجوشی، بسته به فاصله از مرکز خورشید تفاوت می‌کند. برپایهٔ شبیه‌سازی‌ها چنین برآورد شده که توان در مرکز خورشید ۲۷۶٫۵ watts/m۳ است.[۴۹] چگالی توان تولیدی خورشید بیشتر نزدیک به سوخت و ساز بدن یک خزنده‌است تا یک بمب اتم. قلّهٔ توان تولیدی خورشید با انرژی گرمایی تولید شده در یک فرایند فعال کمپوست مقایسه می‌شود. انرژی بسیار بالای بیرون آمده از خورشید نه به این دلیل که خورشید در یکای حجم توان بسیار بالایی تولید می‌کند بلکه به این دلیل است که حجم بسیار بزرگی دارد.

نرخ فرایند همجوشی هسته که در هستهٔ خورشید رخ می‌دهد در تعادل بسیار ظریفی است که پیوسته خود را اصلاح می‌کند تا در تعادل بماند: اگر میزان همجوشی اندکی بیش از اندازه‌ای باشد که اکنون است، آنگاه هسته به شدت گرم می‌شود، در برابر نیروی وزن لایه‌های بیرونی از هر سو گسترش می‌یابد، با این کار نرخ همجوشی کاهش می‌یابد و آشفتگی اصلاح می‌شود. اگر همجوشی اندکی کمتر از مقدار همیشگی آن باشد، هسته سرد و دچار جمع شدگی می‌شود، با این کار نرخ همجوشی افزایش می‌یابد و به تعادل بازمی‌گردد.[۵۰][۵۱]

پرتوهای گامای (فوتون‌های بسیار پرانرژی) آزاد شده از واکنش همجوشی پس از چند میلی‌متر پلاسمای خورشیدی جذب می‌شوند و دوباره با اندکی انرژی کمتر در جهت‌های تصادفی تابیده می‌شوند؛ بنابراین برای یک فوتون زمان بسیار زیادی می‌کشد تا به سطح خورشید برسد. برآوردها نشان می‌دهد که برای یک فوتون ۱۰٬۰۰۰ تا ۱۷۰٬۰۰۰ سال طول می‌کشد تا در خورشید جابجا شود.[۵۲] ما برای نوترینو تنها ۲٫۳ ثانیه زمان برده می‌شود تا به سطح خورشید برسد. نزدیک به ۲ درصد از انرژی کل تولیدی خورشید مربوط به این ذره‌است.

در پایان سفر از لایهٔ همرفتی بیرونی و رسیدن به سطح شفاف شیدسپهر، فوتون‌ها به صورت نور دیدنی در فضا تابیده می‌شوند. پیش از گریز از سطح خورشید، هر یک پرتوی گاما در هستهٔ خورشید به چندین میلیون فوتون نور دیدنی دگرگون می‌شود. در اثر واکنش‌های همجوشی در هسته ذره‌های دیگری به نام نوترینو هم آزاد می‌شوند. این ذره‌ها برخلاف فوتون‌ها کمتر با ماده وارد واکنش می‌شوند بنابراین تقریباً همهٔ آن‌ها می‌توانند بی‌درنگ از خورشید بگریزند. برای سالیان دراز شمار نوترینوهای آزاد شده از خورشید یا نوترینوهای شمرده شده با ابزارها یک-سوم شماری بود که نظریه‌های علمی پیش‌بینی می‌کرد. تا سال ۲۰۰۱ که دانشمندان دریافتند، دلیل این ناهماهنگی به ویژگی نوسان نوترینوها بازمی‌گردد: حقیقت این بود که شمار نوترینوهای تابیده شده از خورشید با شمار پیش‌بینی شده از سوی نظریه با هم برابر بوده‌اند اما ابزارهای شمارش تنها ۱۳ آن‌ها را شمرده بودند و باقی‌مانده را از دست داده بودند و این به دلیل تغییر مزهٔ نوترینوها (به معنی: عدد کوانتومی ذرهٔ بنیادی) در هنگام تشخیص با ابزار بود.